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The numerical instability in the usage of the leap-frog scheme applied to the Kortewegde 
Vries equation is studied. The leap-frog scheme generates computational modes which are not 
included in the original partial differential equation. It is shown that the numerical instability 
comes from the parametric excitation of the computational modes by physical waves. A 
method to suppress the computational modes is given. The method enables us to make long- 
time integration of the Kortewegde Vries equation, even if the amplitude of wave is large. 
0 1989 Academic Press, Inc. 

1. INTRODUCTION 

The numerical solution to a nonlinear partial differential equation by finite 
difference methods often exhibits nonlinear instability, even though linear stability 
conditions are satisfied. The nonlinear instability in finite difference methods has 
been studied from several points of view [l-5]. 

When the partial differential equation contains the time derivative, one of the 
natural ways to approximate the time derivative is to use the leap-frog scheme. The 
leap-frog scheme generates computational modes as well as physical modes in the 
numerical solution [6,7]. The physical modes converge to the solution of the 
original partial differential equation when the temporal increment approachs zero, 
while the computational modes are unphysical modes which are not contained in 
the exact solution. In this paper we study interactions of the computationalmodes 
with the physical modes and show that the computational modes are parametrically 
excited by the physical modes. 

447 
0021-9991/89 $3.00 

Copyright 0 1989 by Academic Press, Inc. 
All rights of reproduction in any Iom~ reserved. 



448 AOYAGIANDABE 

As a typical example noted above, we apply the leap-frog scheme to the 
Korteweg-de Vries equation 

au au a% 
~+U&+pax'=o' (1.1) 

where p is constant. When 1~1 is large, the numerical solution of Eq. (1.1) shows an 
unphysical oscillation in the course of time, whose amplitude suddenly increases 
without bound. This destroys the time integration of the Korteweg-de Vries 
equation (1.1). We will show that the growing unphysical oscillation comes from 
the parametric excitation of the computational modes by the physical modes. The 
reason for the growing unphysical oscillation, therefore, is essentially different from 
those of Briggs et al. [6] and Hsia et al. [8] which have been explained on the 
basis of a weak nonlinear instability. 

On the basis of the results theoretically clarified above, we also propose a practi- 
cal method to suppress the growth of the unphysical oscillation. The method 
enables us to make long-time integration of the Korteweg-de Vries equation (l.l), 
even if (~1 is large. 

2. NUMERICAL SOLUTION BY THE LEAP-FROG SCHEME 

We solve Eq. (1.1) under the periodic boundary condition 

u(x, t) = u(x + 2, t), (2.1) 

and the intial condition 

u(x, 0) = 2&K cos(nKx), (2.2) 

where eK is constant and K is a positive integer. We use the Zabusky-Kruskal 
scheme [9] 

,;+I Euy-’ 
J -&p;+,+u;+u;~l)(u~+l-u;~l) 

-P$ (ui",, -2ui”+i+2uj”-,-u;-z), 

where u; = u(x = jdx, t = ndt), dx is the spatial increment, and dr is the temporal 
increment. Initial condition (2.2) becomes 

24; = 2&K cos(nKj Ax). (2.4) 

In order to obtain the linear stability condition, we replace (u;+ I + u; + u;- ,)/3 
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in the second term of the right-hand side of Eq. (2.3) by a constant c, and use the 
discrete Fourier transformation 

k= -J 
(2.5) 

where 25 Ax = 2. The condition that uj” is real leads to Vk = Ui*, where * denotes 
complex conjugate number. Thus we obtain the linear difference equation for U; as 

f&-~Sin(nkdx) 1 Uz--Uiel=O, (2.6) 

where 

ok - $ sin(xk Ax)[l - cos(ak Ax)]. (2.7) 

If we put U”, cc exp(inO,), the linear stability condition is given from 

Sinek=dt wkBL ’ Ax sm(rrk Ax) 1 . (2.8) 

The linear stability is assured if 

$@+-@l. (2.9) 

FIG. 1. Numerical solutions based on Eq. (2.3). p =0.022’, 71 Af = 5 x 10e4, Ax = 2/200. K = 5 and 
Ed = 0.25 in Eq. (2.4). 
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FIG. 2. Invariant Cz for Fig. 1 as a function of time. C2 is defined by Eq. (2.10). 

We make numerical computations based on Eq. (2.3), putting ,u = 0.022’, K= 5, 
.sK = 0.25, At = 5 x 10P4/a, and Ax = 2/200. The At and Ax satisfy the linear stability 
condition (2.9), as long as ICI N 1. The inverse scattering method [lo] and the 
initial condition (2.2) give the number of solitons. The condition noted above leads 
to two solitons in the fundamental wave length (2/5 = 0.4). From the paper by Abe 
and Satofuka [ll], the near-recurrence time is equal to 187/n. Figure 1 gives the 
numerical solution of U(X, t). We can see that two solitons appear in a fundamental 
wave length of 0.4 as expected, and at the time of nt = 60, however, the heights 
of higher solitons becomes different due to some numerical instability. The 
Korteweg-de Vries equation (1.1) has the conservation relation 

c2= J 2 u(x, tydx-4&;=0. (2.10) 
0 

Figure 2 gives the value of I&( as a function of time t. From the figure we see the 
failure of the Zabusky-Kruskal scheme (2.3) for large t. 

3. PHYSICAL AND COMPUTATIONAL MODES 

When the absolute value of the right-hand side of Eq. (2.8) is less than unity, we 
have two solutions of ek. If one is expressed by ok, the other is equal to z-ok. 
Since exp[in(rr - e,)] = ( -1)” exp( - inO,), the solution of Eq. (2.6) is given by 

U; = Vk exp( id,) + ( - 1)” W, exp( - id,), (3.1) 

where V, and W, are independent of n. The first and the second modes represent 
the physical and the computational modes, respectively. The computational modes 
change their signs at each time step. In view of Eq. (3.1) we may approximate the 
nonlinear solution of U; by 

u;= v;+(-l)“wk. (3.2) 

We call Vi and rk the nonlinear physical and computational modes, respectively. 
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When the amplitude of a wave is small, V;: and Wk reduce to linear solutions, or 
VE + V, exp( inO,) and Wk + W, exp( -MI,). 

We show a method of obtaining the physical modes V2 and the computational 
modes Wk from uJ’ and uj”- ’ which are determined 
(2.3). Substituting Eq. (3.2) into Eq. (2.5) we obtain 

where 

through the leap-frog scheme 

(3.3) 

(3.4) 
(3.5) 

In view of Eq. (3.3) we can write 

‘i n-1 =?-’ - (-1)%-l. (3.6) 

If we put (~J!+‘--u;-~ )/(2 At) = auj/at, Eq. (2.3) becomes 

-~(“j+*-2uj+l+2Uj-I-Uj-z). (3.7) 

where uj is regarded as a function of continuous time t. We integrate Eq. (3.7) from 
(n - 1) At to n At by the Runge-Kutta scheme using u;-l as starting values to 
obtain uj (t = n At). Since the Runge-Kutta scheme is a single-step method, all 
modes of $!-I in Eq. (3.6) are advanced with no such oscillation in time as the 
computational modes. Therefore uj (t = n At) may be expressed as 

uj(t=nAt)=vi”-(-l)“w;, (3.8) 

where we have ignored the higher order errors incurred by the use of the 
Runge-Kutta scheme instead of the leap-frog scheme. Then from Eqs. (3.3) and 
(3.8) we obtain 

u; = [u; + uj (t = n At)]/2, (3.9) 

w; = [ujn - uj (t = n At)]( - 1)“/2, (3.10) 

where uj (t = n At) is the solution by the Runge-Kutta scheme. Figure 3 is the 
schematic graph for uj (t = ndt). The Fourier spectra VE and Wk corresponding to 
I$’ and w; are given by the inverse transformation of Eqs. (3.4) and (3.5) as 

(3.11) 
(3.12) 
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(rl-11nt nAt 

FIG. 3. Schematic graph of physical modes vJ+’ and computational modes wT,-‘. ,;.“-I: leap-frog 
solutions. u,(f = n At), u,[t = (n - 1) At]: Runge-Kutta solutions. 

Thus we obtain separately the physical and the computational modes from the 
numerical solution. 

Figures 4 give the temporal developments of the fundamental physical mode 
v:=5 and its second high harmonics V!&= rO, which correspond to the numerical 
solution shown in Fig. 1. From Figs. 4 it turns out that we can express Jfk and V;, 
as the sums of a low frequency wave and a high frequency wave, i.e., 

vk= VK,tfexp(in drS2K,If) + b,hf exp(in drQK,hr)T (3.13) 

GK = VZK, If exp(in dtS22K,d + b,hf exp(in dtnZK,hf)p (3.14) 

where the subscripts If and hf mean the low and high frequencies, respectively. We 

0.4 

FIG. 4. The fundamental and the second high harmonics of physical modes corresponding to Fig. 1. 
Vk and V;, are defined by Eq. (3.11). 
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TABLE I 

Comparison between Experiment and Theory 

Experiment Theory 

7lAl 5 x 1o-4 5 x 10-4 
Ax 21200 21200 

V K, If 0.23 0.231 
V 2K.M 7.0 x 1o-2 6.27 x 1O-2 
sz R If 0.70 0.724 
L-2 ZK, If 1.4 1.45 
V K,hf 2.3 x 1O-2 2.16 x 1O-2 
V 2K,hf 7.0 x 10-2 6.27 x 1O-2 
sz KM 13.0 16.2 
R2K,hf 14.5 16.9 

1.86 
14.6 
31.0 
15.5 
2.27 

- 13.2 
0.17 

Note. K = 5, .sK = 0.25. 
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FIG. 5. The fundamental and the second high harmonics of computational modes coprresponding to 
Fig. 1. W; and wnK are defined by Eq. (3.12). 
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TABLE II 

Diagram of Physical and Computational Modes 

Total Physical modes Computational modes 

x-space 

k-space U” k V” k c 

1.f. 
v QKJf K,lfV 

V2Klf~ Q2KJf 

h.f. 
v QK.hf K,hf? 

v Q2Kllf 2Khf9 

1.f. 
52 K,If 

L-2 X.11 

h.f. 
Q K. hf 

f2 2X, hf 

Note. uj”=vJ+(-l,“wJ’, U;= Vz+ (-1)” Wk. The captial K appears in the initial condition: 
u~=t$‘=2EKcos(nKjAx) or Ui= V,f=(6,.,+6k,-&l;. 

evaluate by curve fitting the values of VK,lf, QK,,,, vzK,If, Q2K,If, VK,hf, Q,,,,, V,,,, 
and Q,,,, from Vk and V;, given in Figs. 4. The resulting V,,, etc. are tabulated 
in the left column of Table I. 

Figures 5 give the temporal developments of the fundamental computational 
mode VKC5 and its second high harmonics W;,= 1O associated with the physical 
modes shown in Figs. 4. From these figures we can put 

where y is the growth rate independent of K or 2K. The curve fitting gives y = 1.18. 
The precise examination of Figs. 5 reveals that Wi consists of a low frequency 
oscillation and a high frequency oscillation, and the frequencies of the former and 
the latter oscillations are equal to Q,,,, and L2K,hr for the physical mode V$ given 
by Eq. (3.13). The same situation is found for Wj, also. Table II summarizes the 
physical and the computational modes. Figures 6 give the temporal developments 

nt=60. 

d 
lo *’ k 3o 4o 

FIG. 6. Time development of the Fourier spectrum of computational modes corresponding to Fig. 1. 
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I I I I 

-o- experiment _ 

0.2 0.3 
EK 

0.4 

FIG. 7. The growth rate y of computational modes as a function of the amplitude sK of initial wave. 
K= 5. y is detined in Eqs. (5.6) and (5.7). 

of the computational modes Iyn!4,,. From these figures we see that the fundamen- 
tal computational mode I+$ and its second high harmonics IV& dominate over the 
other modes. 

We here emphasize that the failure of the Zabusky-Kruskal scheme (2.3), as 
shown in Fig. 2, comes from the growth of computational modes Vk (or M$). We 
made the numerical integrations based on Eq. (2.3) for various values of the 
amplitude .sK in Eq. (2.4), fixing K= 5. The broken line in Fig. 7 gives the growth 
rate y of the computational modes as a function of cK= 5. It is interesting that the 
computational modes are unstable only if 0.22 < .cK= 5 < 0.32. The solid line in Fig. 7 
will be explained later. 

We also made the numerical computations based on Eq. (2.3) putting K=4 or 
6 in Eq. (2.4). We varied the values of &K=4 or E~,~. The growth rate y of the 
computational modes for K= 4 as a function of cKz4 is given by the broken line 
in Fig. 8. The y for K= 6 also is given in Fig. 8. 

- theory K 

0.0 0.2 
EK 

0.4 

FIG. 8. The growth rate y of computational modes for K = 2, 3, 4, 5, or 6. Results for K = 5 are the 
same as those in Fig. 7. 
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4. ANALYSIS OF PHYSICAL MODES 

As seen from Figs. 4 and 5, at the early stage of the numerical instability, the 
amplitudes of computational modes are small compared to those of physical 
modes, or 

I wltl4 I q. (4.1) 

We substitute Eq. (3.2) into Eq. (2.5), and substitute Eq. (2.5) into Eq. (2.3). If we 
consider the inequality (4.1), we obtain 

Pk+‘-2iAto,V~-- Vi-‘= -iAt 1 Iz,*,,.* v;, v;,,, (4.2) 
k’,k” 

[k’+k”]=k 

and 

W”,+1+2iAtOk~k- W”,-‘=2iAt c &‘,k” c, e”, (4.3) 
k’, k” 

[k’ + k”] = k 

where ok has been defined by Eq. (2.7) and 

(2 sin[n(k’ + V’) Ax] + sin(rrk’ Ax) + sin(r&” Ax)}. 

The brackets [ ] in Eqs. (4.2) and (4.3) are defined by 

(-JGIGJ- l), 
(I> J- l), 
(I< -J). 

Equations (4.2) and (4.3) mean that the time development of the physical modes c 
is independent of the computational modes Wk, while the computational modes are 
parametrically coupled with the physical modes. The initial condition for V; is 
given by Eqs. (2.4) and (3.11) as 

where 8k.l denotes the Kronecker delta. Since Vi = 0 and 1, -k = 0, Eq. (4.2) leads 
US to Vz = 0. The right-hand side of Eq. (4.2) generates the higher harmonics V: 2K, 
v” f3K, etc. If aK is not so large, we may put 1 V’&l 9 1 v”+2KJ B I V”*J..., so that we 
only take into account VtK and V”,2K. Then Eq. (4.2) reduces to 

PK+’ - 2i Ato,V”,- V>-l= -2i At&K,-KV;KV~, (4.4) 
V;: ’ - 2i AtoZK VP& - VT, ’ = -i Atl,,( V;)*. (4.5) 
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In order to obtain approximate solutions to Eqs. (4.4) and (4.5), we regard n as 
continuous quantity and write Eqs. (4.4) and (4.5) in forms of differential equations 

(4.6) 

(4.7) 

Equations (4.6) and (4.7) give the conservation relation 

~~,.IV”,12+~2,-.I~K12=const (independent of n). 

If Ax < 1, then A K,K N &, -K N nK. Considering that I &I2 < I V’J ‘, we may put 

1 Vt12 = const, (4.8) 

which may be assured by Figs. 4. 
If we multiply Eq. (4.6) by VnK and use Eq. (4.8), Eqs. (4.6) and (4.7) reduce to 

simultaneous linear differential equations for ( VK)’ and V;,. We can solve these 
equations analytically to obtain 

l-zexp[i(s,-s,)ndf] 
w 

, (4.9) 

&:{exp[i(oZK+s2)ndt]-exp[i(w2,+s,)n dt]}, (4.10) 

where 

s1 = (20, - coZK + 0”2)/2, S2 = (2w, - coZK - D”2)/2, (4.11) 

D = @,- 02~)’ + ‘t&y&-,&;. 

The right column of Table I gives the values of oK, mZK, Ak,K, I,, _ K, si, and s2 
when K = 5 and EK = 0.25. 

If we put oK N am, o 2K 2: S,U(~K)~, Ak’,kV N 37c(k’ + k”) Ax, we obtain from 
Eqs. (4.11) 

Sl 

I I 

2 
EK 

s2 - = 18$(nK)4 + &i’ 
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so that Is,/szl 4 1 if (sK( < 1. Assuming Is1/s21 4 1, we expand Eq. (4.9) as 

-J1.sKexp 
2% 

fi(w,,+2s,-s&At . 1 (4.12) 

We can give approximate expressions of the four frequencies in Eqs. (4.12) and 
(4.10) as 

a@ZK+S2) = $a,, go,, + 2s, - s2) = 70,, 

O2K + s2 = wK, WZK + S1 N 80~. 

Thus we see that Vk and ViK consist of two oscillations with low and high 
frequencies. Comparing Eq. (3.13) with Eq. (4.12), we can put 

V Sl 
Kghf- 

--e-E 
2s2 K’ 

D K,hf = tw2K + 2s, - s2)/2* 

Comparing Eq. (3.14) with Eq. (4.10), we can put 

V 2K,lf= - V 2K,hf= 

52 2K,lf=W2K+S2, 52 2K,hf=a2K+S1* 

The right column of Table I gives the values of V,,, etc. for K= 5 and sK = 0.25. We 
see a good agreement between experiment and theory. 

5. PARAMETRIC EXCITATION OF COMPUTATIONAL MODES 

In view of Fig. 6, we consider only VK and IV!j,. Then Eq. (4.3) reduces to 

WnK+ ’ + 2i Atw, WK - w;l ’ =2iAt&,-,( VzK wK* + p;ul;rK), (5.1) 

YK” + 2i Atco2K w;,- w;,’ = 2i At&,V;, WK. (5.2) 

If we regard n as a continuous quantity, we can write the left-hand side of Eqs. (5.1) 
and (5.2) as 
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so that the natural frequencies of IV” and W!& are -oK and -mZK, respectively. 
Thus phase rotations of VK and W;, are in the opposite direction to those of the 
high frequency parts of the physical modes. Therefore, we can not expect 
parametric coupling between the computational modes and the high frequency 
parts of the physical modes. We consider only the low frequency parts of the 
physical modes given in Eqs. (4.9) and (4.10) as the pumping modes 

Vg = V, exp( in d tQ,), (5.3) 

V;, = VZK exp(i2n A&,), (5.4) 

where 

(5.5) 
52, = (O2K + S,)/2. 

In order to solve Eqs. (5.1) and (5.2) we put 

PK= WKexp[(iQ,+y)ndtl, (5.6) 

W!&= W2,exp[(i28,+y)n At]. (5.7) 

From Figs. 4 and 5 we have assumed that the frequencies of WnK and IV& are equal 
to those of VK and I?&, respectively. This assumption is recognizable as the condi- 
tion of frequency locking for the parametric excitation, viz. te frequencies, of the 
parametrically excited waves are determined by the modulation frequencies rather 
than by the natural frequencies. The positive y corresponds to the parametric 
excitation of the computational modes. 

We substitute Eqs. (5.3), (5.4), (5.6), and (5.7) into Eqs. (5.1) and (5.2), and 
approximate exp[f(iSZ,+y)dt] N 1 +(iQ,+y)At, assuming Ate 1. Then we 
obtain 

( - 0 + 52, + WK) WK + A,, -K( v,, w,* + v,* W,,) = 0, (5.8) 

(-iy+20,+w2,)W2,-~K,,VKWK=0. (5.9) 

Equations (5.8) and (5.9) and their complex conjugate equations constitute the 
homogeneous algebraic equations for W,, W,*, WZK, and W&, whose coefficients 
contain V,, V,*, VZK, and VT,. The condition that the determinant of the 
coefficient matrix is equal to.zero leads to 
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where 

c2 = C(QK + ~K@QK + O2K) - 12, -KiK,K I VKI 212 

- PJK + (32K12 G, -K I V2K12. 

Since cl > 0, the condition y > 0 is satisfied when c2 < 0. The growth rate y is then 
given by 

y=i [(c:-4c2)1’2-cJ1’2. 
a 

We calculated y as a function of Ed, fixing K= 5. The solid line in Fig. 7 gives y 
obtained thus. 

We also calculated y as a function of sK, fixing K= 2,3,4, or 6. The solid lines 
in Fig. 8 give y obtained thus. If we shift the theoretical curves to the left, we see 
a good agreement between experiment and theory. 

6. SUPPRESSION OF COMPUTATIONAL MODES 

In this section we propose a method to suppress the growth of computational 
modes. Without this method we fail to make long-time integration based on the 
leap-frog scheme, as shown in Fig. 2. We eliminate the computational modes at 
some time step. 

In Section 3 we have decomposed uJ’ into the physical modes 07 and the com- 
putational modes WY. In order to obtain u;” including no computational modes 
through the leap-frog scheme, we need U; and z$!- ’ which include no computa- 
tional modes. We replace ~7 by v; and u;- ’ by vi”- ’ at some time step. To obtain 
,;-I we integrate Eq. (3.7) in the reverse time direction by the Runge-Kutta 
scheme, starting from uJ’ obtained by the leap-frog scheme. The Runge-Kutta 
scheme yields no such oscillation in time as the computational modes, so that 
ui[t = (n - 1) At] obtained by the RungeKutta scheme may be written, in view of 
Eq. (3.3), as 

u~[t=(n-l)dt]=vi”-‘+(-l)~~~--, (6.1) 

instead of the right-hand side of Eq. (3.6). Figure 3 gives the schematic graph for 
uj[t = (n - 1) At]. Equations (3.6) and (6.1) give 

q-’ = (ui”-l + uj[t = (n - 1) dt]}/2. 

The v;-i includes no computational modes. We summarize the algorithm as 

ui”- {ui”+u,(t=ndt))/2, 

q-b {ui”-l +uj[t=(n--1).4t]}/2, 
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where z$ and u;- ’ are determined by the leap-frog scheme, uj(t = n At) is deter- 
mined from I$ - ’ by the use of the Runge-Kutta scheme, and uj[t = (n - 1) At] is 
determined from uJ’ by the use of the Runge-Kutta scheme. 

We apply this method to the problem shown in Figs. 1 and 2. Figure 9 shows the 
results when the computational modes are eliminated at every 24,000 time steps. 
We see that 1 w”,=,) < lo-* and lC21 < lo-’ for all n. The Korteweg-de Vries 
equation (1.1) has conservation relations 

as well as Eq. (2.10). The values of IC,] and (C31 remain less than lo-l3 and 10-3, 
respectively, for all n. 

Zabusky [12] recognized that the leap-frog scheme (2.3) was subject to the 
numerical instability. To suppress the instability he introduced the temporal 
smoothing algorithm in which uJ! and z$- ’ were replaced by (z$ + ’ + 2~; + $! - ‘)/4 
and (u; + 2~;~’ + uJ-*)/4, respectively, at some time steps. We also applied this 
second-order smoother to the problem in this paper. Using the second-order 
smoother, we smoothed UT at every 24,000 time steps (nnt = 12) to compare the 
resulting I$ with those obtained from the present Runge-Kutta smoother. We 
found that the Runge-Kutta smoother leads to results better than those of the 
second-order smoother. 

The present paper treats the initial monochromatic wave given by Eq. (2.4) with 
relatively small amplitude sK= 0.25 so that the parametric excitation of the com- 
putational modes can be analysed theoretically. We are comparing overall validities 
of the Runge-Kutta smoother and the second-order smoother applied to Eqs. (2.3) 
and (2.4 ) for various amplitude .sK. We are also examining how often we need the 
smoothing in long-time integrations of the Korteweg-de Vries equation. The results 
will appear in the next paper. 

-7 ,c*; O 
1 Ii9 

0 40000 n 80000 120000 

I I 1 I 1 I 1 
0 20. x, 40. 6 0. 

FIG. 9. Computational mode IV: and invariant Cz for Fig. 1 as functions of time, when computa- 
tional modes are eliminated at every 24,000 time steps (rrf = 12). p, At, Ax, K, and Ed are given in Fig. 1. 
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7. CONCLUSIONS 

(i) The numerical instability, which often occurs in the usage of the leap-frog 
scheme applied to the Korteweg-de Vries equation, comes from the growth of 
computational modes. 

(ii) The computational modes are parametrically coupled with the physical 
modes. 

(iii) The parametric excitation of the computational modes occurs only for the 
intermediate amplitude of wave (see Figs. 7 and 8). 

(iv) Even if the amplitude of a wave is large, we can make long-time integration 
of the Korteweg-de Vries equation by eliminating the computational modes not at 
each time step, but at some time steps. 
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